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Abstract. Bogomolny’s transfer operator has been used to find an analytical solution for the
semiclassical energy eigenvalues of a simple two-dimensional integrable system. The system
studied consists of a particle moving in an isotropic harmonic oscillator potential plus a 1/r2

potential. The classical trajectories are used to construct the transfer matrix, and an expression is
derived for the eigenvalues of this matrix as a function of the energy. These eigenvalue curves
yield the semiclassical energy eigenvalues for the quantum system, which turn out to be exactly
the same as the results obtained by solving the Schrödinger equation. Some insight into this
unexpected agreement is provided by considering an exact transfer operator. We show that when
this operator is expanded in powers of Planck’s constant, the leading term in the expansion is
Bogomolny’s transfer operator.

1. Introduction

For simple systems described by time-independent Hamiltonians, the correspondence
between classical and quantum descriptions may be viewed as the problem of relating
the trajectories of a classical system to the energy eigenvalues and eigenfunctions of its
quantum analogue. Establishing this connection is complicated when the classical system is
nonintegrable and shows chaotic behaviour, but many such systems have now been studied
using the periodic orbit theory based on the Gutzwiller trace formula and related methods
[1–11].

Another semiclassical approach, applicable to both integrable and nonintegrable systems,
was formulated by Bogomolny [12, 13] in terms of a transfer operator and a suitably chosen
Poincaŕe surface of section (PSS). The transfer operator is constructed using the classical
trajectories that go from a given point on the PSS to another chosen point on the PSS, with
at most one crossing of the PSS in between. (At the chosen points, the trajectories must
cross the PSS in the same sense.) Usually, there is a small number of such trajectories, and
this makes it relatively easy to calculate the transfer operator, or a finite approximation to it,
leading to approximate energy eigenvalues for the analogous quantum system. Bogomolny’s
method has been found to give excellent results for a variety of integrable and nonintegrable
systems [14–23]. In the case of the two-dimensional hydrogen atom, the transfer operator
was calculated analytically [23]. It was found, however, that the energy eigenvalues were
systematically shifted from the exact quantum eigenvalues as a result of an unwanted overall
phase factor in the transfer operator.
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Clearly, it is of interest to find other simple systems for which the transfer operator
can be obtained analytically. In the present paper we describe such a system and show
that it yields results which agree with the exact quantum energy eigenvalues. To gain some
understanding of why this occurs, we consider how Bogomolny’s transfer operator is related
to the exact transfer operator of the system.

2. The transfer operator and the determinantal equation

We begin with a brief description of Bogomolny’s transfer operator. For a system with two
freedoms, the PSS is simply a one-dimensional curve, and the transfer operator has the form

T (q ′′, q ′;E) =
∑
cl.tr.

1

(2π ih̄)1/2

∣∣∣∣∂2S(q ′′, q ′;E)
∂q ′′∂q ′

∣∣∣∣
1
2

exp[iS(q ′′, q ′;E)/h̄− iνπ/2] (1)

where q ′ and q ′′ are points located on the PSS. The summation is over all classical
trajectories which cross the PSS only once in going fromq ′ to q ′′ and have the normal
component of the momentum in the same direction atq ′ andq ′′. For each such trajectory
one needs the action at energyE, denoted byS(q ′′, q ′;E), and the phase indexν, which is
related to the number of points on the trajectory at which the semiclassical approximation
is not valid.

One way of constructing a finite approximation to theT -operator in coordinate space
is to divide the accessible part of the PSS intoN cells, theith cell centred onqi having
width 1i . In terms of the transfer operatorT (qj , qi;E) from qi in cell i to qj in cell j , the
matrix elementTij (E) is defined to be

Tij (E) = T (qj , qi;E)(1i1j )
1/2. (2)

Then the condition for an energy eigenvalue is that

det[δij − Tij (E)] = 0. (3)

We note that this equation will be satisfied whenever one of the eigenvalues of theT -matrix
is equal to unity.

3. The circular harmonic oscillator with a 1/r2 potential

The system we have chosen to study is described by the classical Hamiltonian,

H = p2
r

2m0
+ L2

2m0r2
+ 1

2
m0ω

2r2+ α2

2m0r2
(4)

wherem0 is the mass of the particle,pr = m0ṙ is the radial component of the momentum,
and L = m0r

2θ̇ is the constant angular momentum. The strength of the 1/r2 potential
has been written for convenience asα2/(2m0), whereα has the dimensions of angular
momentum. (We shall assume thatα > 0.) This Hamiltonian has been proposed as
a simple exactly solvable model for an electron interacting with a second electron in a
quasi two-dimensional quantum dot [24–26]. The harmonic potential serves to confine the
electron to the region of the quantum dot, while the 1/r2 term is an average potential
describing the repulsion from the second electron. The two-dimensional Schrödinger
equation corresponding to this Hamiltonian is readily solved (see, for example, Flügge
[27]), and the exact quantum energy eigenvalues are found to be

E(n,m) = h̄ω[2n+ (m2+ α2/h̄2)
1
2 + 1] (5)
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Figure 1. A typical classical trajectory of the circular oscillator plus 1/r2 potential. The outer
and inner circles have radiir+ andr− respectively, given by equation (6).

wheren takes the values 0, 1, 2, . . ., and the angular momentum quantum numberm is any
positive or negative integer including zero. The corresponding eigenfunctions are confluent
hypergeometric functions times exp(imθ).

Let us consider the classical motion associated with the Hamiltonian (4). It is not hard
to show that the minimum possible energy of the system isEmin = ωα. For a given total
energyE > Emin the radial motion occurs betweenr− andr+ given by

r2
± =

E ± [E2− ω2(L2+ α2)]
1
2

m0ω2
. (6)

In figure 1 we show a typical classical trajectory.
For this system a natural choice for the PSS is a circle. While any circle having a radius

betweenr− and r+ would be satisfactory, we have chosen the circle of radiusr = r+ as
the PSS. (Conceptually it would be desirable to choose the radius of the PSS to ber+ − ε,
where ε is small and positive, as then the classical trajectories would actuallycross the
PSS. One could then letε tend to zero at a later stage in the calculation.) The coordinateq

in the transfer operator may be taken to be the angleθ from a chosen reference line. The
PSS is divided intoN cells of width1 = 2π/N , and the centres of the cells are situated at
θj = j1, j = 1, 2, . . . , N . To construct the matrix elementTij (E) we require the trajectory
at energyE connecting the pointsθi and θj on the PSS which does not touch the PSS at
any point in between. We now show that when such a trajectory exists, it is unique and
corresponds to a particular value of the angular momentumL.

Let us regard the trajectory as a functionr(θ) and writeṙ = (dr/dθ)θ̇ . Then,

m0r
2ṙ = Ldr

dθ
. (7)

Using equation (4) to obtaiṅr, for a fixed energyE of the system, and integrating
equation (7) over the trajectory fromθi to θj , we obtain,

θj − θi = 2
∫ r+

r−

L dr

r[2m0Er2−m2
0ω

2r4− (L2+ α2)]
1
2

= Lπ

(L2+ α2)
1
2

. (8)
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For given anglesθi and θj on the PSS, this equation can be solved to find the required
value ofL for the trajectory. However, it is clear from equation (6) that, for a givenE, the
maximum possible value ofL must satisfy

L2
max= E2/ω2− α2. (9)

Hence, from equation (8), the maximum angular displacement in one mapping from the
PSS to the PSS is

|θj − θi |max= π(1− ω2α2/E2)
1
2 . (10)

If the cells i and j are farther apart in angle than this, there is no classical trajectory
connecting them at energyE, and the corresponding matrix elementTij (E) is zero.

To calculate the matrix elementTij (E) from equations (1) and (2), we require the action
for the trajectory fromθi to θj at energyE. After a short calculation we find

S(θj , θi;E) = 2
∫ r+

r−
|pr | dr +

∫ θj

θi

L dθ = πE/ω − α[π2− (θj − θi)2]
1
2 . (11)

The second derivative is

∂2S

∂θj ∂θi
= − π2α

[π2− (θj − θi)2]
3
2

. (12)

Hence, when the trajectory fromθi to θj exists, the matrix element is

Tij (E) = 1

(2π ih̄)
1
2

(
π2α

[π2− (θj − θi)2]
3
2

)1
2

× exp{iπE/(h̄ω)− iα[π2− (θj − θi)2]
1
2 /h̄− iνπ/2}. (13)

Because of the rotational symmetry of the Hamiltonian, the matrix elements depend
only on the angular differenceθ = θj − θi . As a result, the transfer matrix is a circulant
matrix, for which the eigenvalues can be calculated analytically [22]. Setting the phase
index ν equal to 2, corresponding to two classical turning points in the radial motion, and
putting θmax= π(1− ω2α2/E2)

1
2 , as in equation (10), we define

tn(E) = 1

(2π ih̄)
1
2

(
π2α

(π2− θ2
n )

3
2

)1
2

exp[iπE/(h̄ω)− iα(π2− θ2
n )

1
2 /h̄− iπ ] (14)

for 06 θn 6 θmax and for 2π−θmax6 θn 6 2π , while tn(E) = 0 for θmax6 θn 6 2π−θmax.
Then theN eigenvalues of theT -matrix are [22]

λm(E) =
N∑
n=1

tn(E) exp(i2πmn/N) m = 0, 1, . . . , N − 1. (15)

From the fact thattn(E) = t−n(E) = tN−n(E), it is easy to show thatλ−m(E) = λm(E).
Thus, although we shall restrictm to zero and the positive integers in what follows, each
eigenvalue curveλm(E) with m nonzero is doubly degenerate. (The curve form = 0 is
nondegenerate.) If we now putθ = 2πn/N and letN tend to infinity, we can convert the
summation into an integral:

λm(E) = πα
1
2

(2π ih̄)
1
2

∫ θmax

−θmax

exp[iπE/(h̄ω)− iα(π2− θ2)
1
2 /h̄+ imθ − iπ ]

(π2− θ2)
3
4

dθ. (16)
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We evaluate the integral using the stationary phase approximation. The point at which the
phase is stationary is found to be

θ0 = − mπ

(m2+ α2/h̄2)
1
2

. (17)

After removing constant factors, the integral in (16) has the form∫ θmax

−θmax

exp[ia(θ − θ0)
2] dθ ≈

∫ ∞
−∞

exp[ia(θ − θ0)
2]dθ =

(π
a

)1
2

exp(iπ/4) a > 0.

(18)

From the Taylor expansion of the function in the exponential of equation (16) about the
point θ0, the constanta is found to be

a = h̄
2(m2+ α2/h̄2)

3
2

2πα2
. (19)

Hence, the stationary phase approximation for the integral in (16) and the approximation
resulting from extending the limits in (18) give the following simple result for the
eigenvalues of the transfer matrixT (E) as a function ofE:

λm(E) = exp{iπ [E/(h̄ω)− (m2+ α2/h̄2)
1
2 − 1]} m = 0, 1, . . . . (20)

Since an energy eigenvalue of the quantum system occurs whenever one of theT -matrix
eigenvalues is equal to unity (see equation (3)), we obtain an energy eigenvalue whenever the
quantity in square brackets in (20) is equal to an even integer. Then the energy eigenvalues
are

Emn = h̄ω[2n+ (m2+ α2/h̄2)
1
2 + 1] m = 0, 1, . . . . (21)

This equation is the same as the result for the exact quantum energies, equation (5). Note
that the two-fold degeneracy corresponding tom and−m for nonzerom, which exists in
the quantum solution, is correctly given here, as was discussed following equation (15).

What are the allowed values of the integern in equation (21)? In the solution of the
radial Schr̈odinger equation,n can have only the values 0, 1, 2, . . . in order to make the
series solution terminate, thereby avoiding a solution which would diverge exponentially
with increasingr. However, in the semiclassical solution presented in this section, the
only obvious requirement is that the energy is greater than the minimum classical energy
Emin = ωα. Thus, there seems to be no reason to rule out negative integer values forn such
that, for given±m, 2n + (m2 + α2/h̄2)

1
2 + 1 > α. The lack of a good reason to exclude

these negative values ofn seems to be a failing of the present semiclassical method.

4. An exact transfer operator and its relation to the semiclassical transfer operator

At first sight it may seem surprising that we have obtained energy eigenvalues for our system
using Bogomolny’s transfer operator that are exactly the same as the energy eigenvalues
of the Schr̈odinger equation. First of all, Bogomolny derived his transfer operator from a
semiclassical Green function [12] which is certainlynot an exact Green function for the
quantum problem. Secondly, the integral in equation (16) was evaluated using the stationary
phase approximation. Thus, it would appear that the effects of these approximations are
cancelling out to give the correct quantum mechanical result.

A different way of looking at the situation, however, is to think of the semiclassical
transfer operator, given by equation (1), as being the leading term of an expansion of
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an exact transfer operator in powers of ¯h. (We define an exact transfer operator to be
one which, through a determinantal equation such as (3), yields the exact quantum energy
eigenvalues. It is not known whether such an operator always exists.) This point of
view was suggested in the work of Gaspard and Alonso [30, 31] where they obtained the
most important correction terms for the Gutzwiller trace formula [1, 2] in the framework of
periodic orbit theory. Finding an exact transfer operator appears to be a difficult problem
for a generic system. Prosen [32] has derived a quantum Poincaré mapping which reduces
to Bogomolny’s transfer operator in the semiclassical limit (¯h→ 0), but his result is formal
and difficult to exploit. Fortunately, for the present problem the rotational symmetry makes
it easy to obtain a simple expression for an exact transfer operator. (An exact transfer
operator has also been derived for another system having circular symmetry—the annulus
billiard [33].) In the remainder of this section we shall write down an exact transfer operator
for our system, and show that Bogomolny’s semiclassical transfer operator is the leading
term of an expansion in powers of ¯h.

As in the previous sections of the paper, the PSS is chosen to be the circle of radiusr+
given by equation (6). The rotational symmetry implies that the mapping from(r+, θ ′) to
(r+, θ ′′) depends only on the angleθ = θ ′′ − θ ′. In terms of this angle, we have found an
exact transfer operator at energyE to be

T exact(θ;E) =
∞∑

m=−∞

1

2π
exp{iπ [E/(h̄ω)− (m2+ α2/h̄2)

1
2 − 1]} exp(−imθ) (22)

with −π 6 θ 6 π . This definition should be interpreted in the sense of distributions,
since classically the infinite sum overm does not exist. To verify that this yields the exact
quantum energies, without approximations, suppose the PSS is divided intoN equal cells
of width 1 = 2π/N . From equation (2) one can define the matrix elements corresponding
to (22), and hence obtain anN×N matrix T exact(E) which has the form of a circulant. The
eigenvalue curves of this matrix can be found by using equation (15), withtn(E) replaced
by the corresponding matrix element of (22). If one then letsN →∞, the sum in (15) is
converted into an integral which is easily evaluated. One obtains the equation forλm(E) in
equation (20), without having made any approximations. (The finite matrix approximation
for T exact(E) has been removed by lettingN →∞.) Thus, with the help of the step leading
from (20) to (21), we see that the transfer operator (22) yields the exact quantum energy
eigenvalues.

To obtain a semiclassical approximation to (22) we use the Poisson summation formula
in the form [34, 35],

∞∑
m=−∞

f (m) =
∞∑

M=−∞

∫ ∞
−∞

f (x) exp(i2πMx) dx. (23)

This enables us to write

T exact(θ;E) =
∞∑

M=−∞

1

2π

∫ ∞
−∞

exp[igM(x)] dx (24)

where

gM(x) = π [E/(h̄ω)− (x2+ α2/h̄2)
1
2 − 1]+ (2πM − θ)x. (25)

Let us attempt to evaluate the integrals in (24) by using the stationary phase approximation.
For the integral involvinggM(x), the conditiong′M(x) = 0 has the solution

xM = α(2πM − θ)
h̄[π2− (2πM − θ)2]

1
2

. (26)
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However, forθ in the range−π 6 θ 6 π , this is real only for the caseM = 0. This
means that when|M| 6= 0, a stationary point does not exist on thex-axis, implying that the
corresponding integrals cannot be evaluated by the stationary phase method. Therefore, let
us keep only theM = 0 term in the summation in (24). Truncating the Taylor expansion
of g0(x) about its stationary pointx0 at (x − x0)

2, we obtain the result

T exact(θ;E) ≈ 1

(2π ih̄)
1
2

(
π2α

(π2− θ2)
3
2

)1
2

exp{iπE/(h̄ω)− iα(π2− θ2)
1
2 /h̄− iπ}. (27)

If we setθ = θj−θi in this expression and compare it with equation (13), using equation (2)
to extract the operator from the matrix elementTij (E), we see that this expression is
precisely Bogomolny’s transfer operator for our system. This is the main result of this
section.

It is of some interest to consider the corrections that arise when theM = 0 integral is
evaluated in a better approximation. Corrections to the basic stationary phase approximation
can be generated in a systematic way by expandingg0(x) to higher powers in(x−x0). The
integrand then becomes multiplied by a factor of the form

exp[ib(x − x0)
3+ ic(x − x0)

4+ · · ·]
≈ 1+ ib(x − x0)

3+ ic(x − x0)
4− (b2/2)(x − x0)

6+ · · · . (28)

The integral involving any odd power on the right-hand side is zero because the integrand
is an odd function of(x − x0). The integrals involving the last two terms shown in (28)
can be worked out by repeatedly differentiating both sides of the relation∫ ∞

−∞
exp[−i|a|(x − x0)

2] dx =
(
π

|a|
)1

2

exp(−iπ/4) (29)

with respect to the parameter|a|. The net result of retaining the terms shown in (28) is to
multiply the right-hand side of (27) by the factor(

1− i
3c

4|a|2 − i
15b2

16|a|3
)
=
(

1− i
3h̄

8α(π2− θ2)
1
2

+O(h̄2)

)
. (30)

Thus, denoting the right-hand side of equation (27) asT Bog(θ;E), we have shown that

T exact(θ;E) = T Bog(θ;E)
(

1− i
3h̄

8α(π2− θ2)
1
2

+O(h̄2)

)
+
∑
|M|6=0

1

2π

∫ ∞
−∞

exp[igM(x)] dx. (31)

We have not attempted to evaluate the integrals involving|M| 6= 0.

5. Discussion

We have studied a simple two-dimensional integrable system consisting of an isotropic
harmonic oscillator potential and a 1/r2 potential. Using a suitably chosen Poincaré surface
of section, and taking advantage of the circular symmetry, we were able to derive an
expression for the eigenvalues of Bogomolny’s transfer matrix as a function of energy.
This leads to semiclassical energy eigenvalues for the quantum system which are exactly
the same as the eigenvalues obtained by solving the Schrödinger equation. It is worth
mentioning at this point that other methods for obtaining approximate energy eigenvalues
also yield the exact quantum energies for this particular system. We have shown that both



4072 P Tong and D A Goodings

Einstein–Brillioun–Keller (EBK) quantization (see, for example, [2, p 214]) and the WKB
approximation as modified by Langer [28, 29] lead to the exact quantum energies given by
equations (5) or (21).

Some insight into the situation is provided by the analysis of section 4, where it was
shown that Bogomolny’s semiclassical transfer operator can be obtained from an exact
transfer operator by making two approximations. First, only theM = 0 term was retained
in the summation of equation (24). Secondly, the expansion ofg0(x) about the stationary
point x0 was truncated after the term in(x− x0)

2. Corrections to the second approximation
were shown to be of a higher order in ¯h. The contributions from the terms with|M| 6= 0,
however, have not been investigated. Nevertheless, it seems clear (though not rigorously
demonstrated) that corrections to Bogomolny’s semiclassical transfer operator are of a higher
order inh̄. Likewise, it seems very likely that corrections to the stationary phase evaluation
of the integral in equation (16) are of a higher order in ¯h. (A partial examination of these
corrections, along the lines of the last section, supports this idea.) If these conjectures
are correct, both types of corrections would lead to additions to the semiclassical energy
eigenvalues (the right-hand side of (21)) which are of the order of ¯h2 or higher. It follows
that when no corrections are included, the result is justEmn given by equation (21). When
viewed in this way, it is not so surprising that the semiclassical energy eigenvalues from
Bogomolny’s transfer operator are the same as the exact quantum energies.

Acknowledgments

We would like to thank Julie Lefebvre and Donald Sprung for helpful suggestions. We
would also like to thank Niall Whelan and the referees of this paper for suggesting that
we investigate the corrections to the semiclassical approximation, which led to section 4.
This research was supported by the Natural Sciences and Engineering Research Council of
Canada.

References

[1] Gutzwiller M C 1971J. Math. Phys.12 343
[2] Gutzwiller M C 1990Chaos in Classical and Quantum Mechanics(New York: Springer)
[3] Berry M V 1986 Quantum Chaos and Statistical Nuclear Physics (Lecture Notes in Physics vol 263)ed

T H Seligman and H Nishioka (Berlin: Springer) p 1
[4] Voros A 1988J. Phys. A: Math. Gen.21 685
[5] Berry M V and Keating J P 1990J. Phys. A: Math. Gen.23 4839
[6] Berry M V and Keating J P 1992Proc. R. Soc.A 437 151
[7] Artuso R, Aurell E and Cvitanović P 1990Nonlinearity 3 325
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